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 SPECIAL ISSUE 

 In vivo Retinal Imaging 

               Introduction 

 Adaptive optics (AO) retinal imaging tools have substantial poten-
tial for use in the diagnosis of retinal degenerations. The improve-
ment in retinal image contrast and resolution allows the direct 
observation of the cone and rod photoreceptors (Dubra et al.,  2011 ; 
Cooper et al.,  2011 ; Rossi et al.,  2011 ), allowing the opportunity to 
directly assess pathology early in the disease course. Central to the 
clinical application of this technology is the ability to quantita-
tively analyze the photoreceptor mosaic. At present, the majority of 
studies have focused on the analysis of cone density and spacing of 
cones (Li & Roorda,  2007 ; Chui et al.,  2008 ; Li et al.,  2010 ; Dees 
et al.,  2011 ; Song et al.,  2011 ; Garrioch et al.,  2012 ; Chiu et al., 
 2013 ; Park et al.,  2013 ; Ratnam et al.,  2013 ; Lombardo et al., 2013 a   ). 
These studies demonstrate moderate to high variability within cone 

density and spacing within the healthy adult population, making it 
diffi cult to detect small deviations from normal. However, despite 
individual differences in cone density and spacing, the parafoveal 
cone mosaic uniformly presents as a triangular lattice, and it is 
thought that the quality of the cone lattice is of high importance for 
the interreceptoral network and cell signaling (Hirsch & Miller, 
 1987 ; Pum et al.,  1990 ; Lombardo et al., 2013 b   ). Thus, disorder in 
cone packing could serve as an important and sensitive measure 
with which to characterize a given image of the cone mosaic 
(Baraas et al.,  2007 ; Wojtas et al.,  2008 ). 

 The geometry of the overall cone mosaic can be easily visual-
ized by defi ning the Voronoi domain associated with each cone 
photoreceptor cell in the mosaic. In a perfectly triangular lattice, all 
cones will have hexagonal Voronoi domains. While numerous 
investigators have demonstrated that the majority of cones in the 
normal parafoveal cone mosaic have hexagonal Voronoi domains 
(Baraas et al.,  2007 ; Li & Roorda,  2007 ; Carroll et al.,  2010 ; Wagner-
Schuman et al.,  2010 ; Dees et al.,  2011 ; Dubra et al.,  2011 ; 
Lombardo et al., 2013 b   ; Lombardo et al.,  2013 c  ), there are only 
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 Abstract 

 The ability to noninvasively image the cone photoreceptor mosaic holds signifi cant potential as a diagnostic for retinal 
disease. Central to the realization of this potential is the development of sensitive metrics for characterizing the 
organization of the mosaic. Here we evaluated previously-described and newly-developed (Fourier- and Radon-based) 
methods of measuring cone orientation in simulated and real images of the parafoveal cone mosaic. The proposed 
algorithms correlated well across both simulated and real mosaics, suggesting that each algorithm provides an accurate 
description of photoreceptor orientation. Despite high agreement between algorithms, each performed differently in 
response to image intensity variation and cone coordinate jitter. The integration property of the Fourier transform 
allowed the Fourier-based method to be resistant to cone coordinate jitter and perform the most robustly of all three 
algorithms. Conversely, when there is good image quality but unreliable cone identifi cation, the Radon algorithm 
performed best. Finally, in cases where the cone coordinate reliability was excellent, the method previously described 
by Pum and colleagues performed best. These descriptors are complementary to conventional descriptive metrics of the 
cone mosaic, such as cell density and spacing, and have the potential to aid in the detection of photoreceptor pathology.   
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a few examples of using mosaic geometry to detect retinal pathology 
in AO imagery. Baraas et al. ( 2007 ) imaged individuals with congen-
ital tritan color vision defi ciency and observed density within normal 
limits but signifi cantly disrupted regularity, with the percentage of 
six-sided Voronoi cells being substantially lower (55%) than normal 
controls (70%). The authors concluded that the short-wavelength 
sensitive (S-) cones degenerated in these patients, with the observed 
normal density explained by the fact that the S-cones comprise 
only about 5% of the total number of cones (which is signifi cantly 
smaller than the known inter-individual variability in cone density). 

 Further insight into the packing regularity of the cone mosaic 
comes from assessment of the orientation of individual cones 
within the mosaic. Previous work has shown that the human cone 
mosaic forms a variable number of hexagonal submosaics that 
differ in orientation and are separated by cones with nonhexagonal 
arrangements (Pum et al.,  1990 ; Ahnelt & Kolb,  2000 ). Algorithms 
for assessing the orientation of the cone mosaic were originally 
developed for use in histological images, but to our knowledge 
have not been applied to AO images of the cone mosaic. Thus, 
the aim of the present work was to demonstrate two new methods for 
analyzing the anisotropy and orientation of cones in simulated and 
real AO images of the parafoveal cone mosaic. These methods were 
based on Fourier (Meitav & Ribak,  2011 ) and Radon transforms 
(Deans,  1983 ) and were compared to a previously developed algo-
rithm (Pum et al.,  1990 ). We demonstrate that the orientation of 
individual cones within the mosaic can be accurately measured 
using these techniques.   

 Materials and methods 

 Three algorithms were implemented to assess the orientation of a 
set of photoreceptors in images using MATLAB (Mathworks Inc, 
Natick, MA). Each algorithm was tested on both simulated and real 
images of the cone photoreceptor mosaic. For each image, cone 
photoreceptor coordinates were used to derive a Voronoi diagram 
for the mosaic. The number of neighbors of a given cone was 
defi ned as the number of sides of the Voronoi polygon corresponding 
to that cone’s location. Only orientation information for cones with 
six neighbors was obtained with each algorithm.  

 Neighbor derived orientation 

 Spatial orientation analyses assay local neighborhoods of individual 
cones. For a given cone location, nearby neighbors can be identifi ed 
either by distance (Pum et al.,  1990 ) or by using a Voronoi diagram 
(Curcio & Sloan,  1992 ). The original method in Pum et al. ( 1990 ) 
selected the seven nearest neighbors, and excluded any cones 
outside ±30% of the median neighbor distance. Cells within the ±30% 
median distance “band” were used for analysis. Curcio and Sloan 
( 1992 ) modifi ed this step to use the neighbors defi ned by the Voronoi 
diagram of the cone centers. Both methods limited further analysis 
to those cones with only six neighbors. 

 In the neighbor-derived orientation, a vector is created from the 
central cone to each neighbor. Pum et al. ( 1990 ) used the median-
distance neighbor to defi ne an initial reference vector, and com-
puted the difference between that vector and the vector from the 
central cone to each of the other neighbors, adjusting the differ-
ences in angle to lie between ±30°. These adjusted vectors plus the 
original reference vector were added and divided by 6 to yield 
a “characteristic vector” which contained information about 
size and orientation of a hexagon centered on that central cone 

(Pum et al.,  1990 ). Curcio and Sloan ( 1992 ) used a slightly dif-
ferent method of computing orientation, which took the median of 
the adjusted vectors and reference vector to create the “characteris-
tic vector,” though this yielded similar results to the method of 
Pum et al. ( 1990 ). Both produce a characteristic orientation which 
ranges over 60° because of the presumed six-way symmetry of the 
hexagonal neighborhood. Due to concerns regarding the reliability 
of the median-based characteristic vector, the Pum algorithm was 
used throughout this manuscript.   

 Fourier derived orientation 

 Fourier spectral analysis is intrinsically insensitive to cones missed 
or misidentifi ed in the image and provides global, reliable information 
on their spacing, arrangement, and periodicity. Based on this premise, 
a spectrum angular Fourier method was performed on several overlap-
ping circular regions of interest (ROIs) (e.g., two adjacent areas were 
50% overlapped),  I ( x , y ), with a diameter 4.5 times greater than the 
inter-cell distance (ICD) of the given mosaic ( Fig. 1 ). The ROI size 
was chosen empirically to balance stability and sensitivity; substan-
tially larger (>6 times the ICD) ROIs caused the algorithm to be insen-
sitive to local variations, whereas substantially smaller (<3 times the 
ICD) ROIs caused the algorithm to produce highly variable results. 
The power spectrum of each ROI was derived from the discrete 
Fourier transform (DFT):  f ( u , v ) = DFT(| I ( x , y )| 2 ), and converted to 
polar coordinates f(  ρ  ,  θ  ). All DFTs were performed using the fast 
Fourier transform (FFT). In general  f (  ρ , θ  ) can be written as a sum 
of cosine angular function components:

  0
1

, , , cos , ,n n
n

f A A n  (1) 

 where  A   n  (  ρ  ,  θ  ) and   ϕ    n  (  ρ  ,  θ  ) are the amplitude and the phase of the 
 n th Fourier harmonic components of  f (  ρ  ,  θ  ), respectively. The infor-
mation on the packing arrangement, such as spacing and orientation, 
can be retrieved by taking the 1-D Fourier transform on the angular 
content of the power spectrum of eqn. (1), as follows:

  ( ) ( )( )ρρ θω =
2

FFT, , ,fF  (2) 

 by evaluating the modulo component and the phase of eqn. (2).     
 The sixth spectrum component,  F (  ρ  ,6), contains frequency infor-

mation about the six equidistant vertices, regardless of the orienta-
tion of the hexagonal packing. For each   ρ   value, the modulus  F (  ρ  ,6) 
represents the size of the hexagonal arrangement and its corre-
sponding phase represents the local hexagonal packing orientation. 
If we extract the value   ρ   max , which represents the maximum value 
of the module  F (  ρ  ,6), the corresponding  d  hex  = 1/  ρ   max  can be iden-
tifi ed as the spatial characteristic length scale associated with the 
hexagonal arrangement on the ROI. The corresponding local mean 
orientation of the hexagonal arrangement is calculated as   ϕ   6  = 
−arg( F (  ρ   max ,6))/6 and defi ned as the  average angular hexagonal 
neighbor orientation . The average angular hexagonal neighbor 
orientation was calculated for each ROI, and the orientation of each 
cone was determined by averaging the orientations of each ROI 
that overlapped the cone’s location. The algorithm steps are shown 
graphically in  Fig. 1 .   

 Radon derived orientation 

 Another approach was derived using the Radon transform (Deans, 
 1983 ). The Radon transform is an integral transform typically 
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performed over a series of straight “projection” lines. The inverse 
of the Radon transform is used extensively in reconstruction of 
medical computed tomography images (Herman & Kuba,  1999 ). 
Here, we used the Radon transform to assess orientation by deter-
mining the projection angle, which typically occurs along the ori-
entation of the cones. To accomplish this, a ROI that was 4.5 times 
the mean ICD was extracted at each cone location ( Fig. 2A ). This 
ROI size was empirically determined to be ideal; a larger ROI was 
insensitive to local changes in orientation, while a smaller ROI 
was too sensitive to local changes, and had noisy results. A circular 
mask was applied to each ROI ( Fig. 2B ), and each ROI was trans-
formed using the Radon transform

  ( ) ( )( )θ = 2, , ,f r R I x y  (3) 

 where   θ   is the angle of the projection and  r  is the projection bin. In the 
Radon-transformed ROI, each row (  θ  ) was an angle and each column 
was a projection bin ( r ) ( Fig. 2C ). Because the rotation of a hexagon 
can only be detected over a −30 to 30° range, only   θ   between the 
values of 60 and 120° (where 90° is horizontal) were considered.     

 When a Radon transform is oriented along the axis of the 
photoreceptors contained in a ROI, it creates a characteristic multi-
peak pattern along across the projection bins ( r ) ( Fig. 2D , orange 
profi le) corresponding to the dominant orientation at that location. 
This information can be extracted from the Radon transform by 
assessing the row (  θ  ) at which the multiple-peak pattern is most 
resolvable. To mitigate the effect of image noise on our measurement 

of the multiple peaks, each row (  θ  ) was smoothed with a Gaussian 
fi lter (fi fth order,   σ   = 0.75), and the second order derivative of the 
smoothed row was calculated. The central region of the row was 
cropped to exclude the masked area using the fi rst and last zero-
crossings, and the root-mean-square (RMS) of the cropped, differ-
entiated profi le was calculated along each row. The row with the 
maximum RMS was taken as the main orientation of the ROI.  1     

 Algorithm validation 

 To assess the accuracy of the algorithms, a simulated cone mosaic 
with perfect hexagonal packing was created as an idealized model 
of the human parafoveal cone mosaic. The simulated mosaic sub-
tended 150 × 150  µ m with a 0.45  µ m/pixel, and the cone spacing 
(ICD = 3.64   μ  m) corresponded to a density of 87,000 cones/mm 2 . 
The relationship between spacing and density is consistent with 

  

 Fig. 1.      Outline of the steps to retrieve the orientation of individual cones using the Fourier method. (A) Individual cones in an AOSLO 
image of the cone mosaic are identifi ed using a cone identifi cation algorithm, and the mean inter-cell neighbor distance is calculated. 
A region of interest (ROI; white circle) with a diameter 4.5 times greater than the ICD is sampled uniformly across the image such that 
each ROI overlaps by 50% with each of its neighboring ROIs. (B) For each ROI, a binary mask is used to generate an image of the cone 
coordinates,  I ( x , y ). (C) The power spectrum,  f ( u , v ) = DFT(| I ( x , y )| 2 ), is calculated for each ROI and converted to polar coordinates, 
 f (  ρ  ,  θ  ), as shown in (D). (E) Next, a 1-D FFT is performed on the angular content of the power spectrum of  F (  ρ  ,  Θ  ) = FFT(| f (  ρ  ,  ω  )| 2 ). The 
 spatial characteristic length scale , associated with the hexagonal arrangement of the cones within the ROI, is defi ned as  d  hex  = 1/  ρ   max , 
in which   ρ   max  represents the maximum value of the module  F (  ρ  ,6). (F) The corresponding local mean orientation of the hexagonal arrange-
ment is calculated as   ϕ   6  = −arg( F (  ρ   max ,6)/6) and it expresses the  average angular hexagonal neighbor orientation  for each ROI. (G) The 
fi nal orientation for each six-sided cell is computed by taking the mean of  average angular hexagonal neighbor orientations  of the ROI 
in which that cell fell. Non six-sided cells are shown as open circles in (F) and (G). The AO image subtends a 120 × 120  µ m area.    

   1    Orientation unwrapping . Since six-neighbor cells can assume 
orientations over a periodic range of ±30°, a  wrapping effect  can occur 
whenever the value is close to either extreme of that range. The orientation 
periodicity precludes the direct recovery of true orientation differences. For 
example, cone orientations of −29 and 30° without adjusting for wrapping 
would erroneously be considered 59° apart. This can be particularly 
detrimental for any comparisons that rely on a monotonic scale, such as 
the intraclass correlation coeffi cient (ICC). To address this, we unwrapped 
the orientations when differences between algorithm orientations were 
greater than 30° apart. Thus, in the example presented above, the angles 
would become 31 and 30°, correctly representing the actual difference (1°) 
between results from the different algorithms.  
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that of a perfect hexagonal mosaic, according to methods described 
by Coletta and Williams ( 1987 ). The coordinates were rotated 
(between ±30°; with 1° step), and then cropped to a 120 × 120  µ m 
area for analysis. From this set of coordinates, an accompanying 
cone “image” was generated by convolving a 2D Gaussian with a 
binary mask at each of the cone locations. Each algorithm was run 
on each rotated cone mosaic. The results of each algorithm were 
then compared to the known rotation ( Fig. 3A ).     

 We further examined the accuracy of the algorithms in the pres-
ence of noise by perturbing the coordinates in the perfect mosaics 
by a random amount drawn from a Gaussian distribution with a 
mean of 0 and a  s.d  equivalent to 5% of the cone spacing (0.21   μ  m, 
 Fig. 3B ). Additionally, the intensity of each cone in the image was 
adjusted by randomly selecting an intensity from a log-normal 
distribution with a 24.9 A.U. (arbitrary units)  s.d.  and mean intensity 
of 80 A.U., based on cone refl ectivity values previously observed in 
AO images from normal subjects (Cooper et al.,  2011 ).   

 Testing algorithm performance 

 To examine the performance of each algorithm on a more “realistic” 
simulated mosaic, we generated mosaics that contained multiple 
submosaics of differing local orientation ( Fig. 4 ). A 130 × 130  µ m 
area (0.45  µ m/pixel scale) was created, and 20 locations from within 
the area were randomly drawn from a uniform distribution and used 
as seed locations for each submosaic. Each seed location was 

assigned a random rotation within a range of ±30°, and new cones 
were added radially to each seed, separated by an azimuth of 60° and 
a radius defi ned by an ICD of 3.64  μ m so as to maintain a hexagonal 
lattice affi xed at the seed’s assigned orientation. This process was 
repeated for each cone until encountering another cone. Once no 
more cones could fi ll the area, the cone locations were “relaxed” 
100 times using a “hard disk” model similar to that proposed by 
Stillinger et al. ( 1964 ) (Supplemental Video 1). The fi nal mosaic was 
then cropped to a 120 × 120  µ m area for analysis. One hundred 
simulated mosaics, which contained 77 ± 2% six-sided Voronoi 
cells, were created in this manner. An accompanying cell image 
was generated for each simulated mosaic as previously stated, and 
all three algorithms were then run on each simulated image.     

 Finally, each algorithm was tested using 17 images acquired 
from 17 subjects using a custom adaptive optics scanning light 
ophthalmoscope (AOSLO) (Dubra & Sulai,  2011 ). This research 
was conducted according to the tenets of the Declaration of 
Helsinki, and image acquisition was approved by the institu-
tional research boards at the Medical College of Wisconsin and 
Marquette University (Milwaukee, WI). AOSLO images were 
acquired using a 790 nm scanning beam over a 1.0° fi eld of view, 
0.5° temporal from fi xation was imaged in each subject. Axial 
length measurements were obtained on all subjects using an IOL 
Master (Carl Zeiss Meditec, Dublin, CA), and used in combina-
tion with a simplifi ed Gullstrand II model to convert from degrees of 
visual angle to micrometers on the retina. The central 120 × 120  µ m 

  

 Fig. 2.      Outline of the steps used to determine the orientation of individual cones using a Radon transform. (A) A ROI 4.5 times the ICD 
is centered on each cone with a six-sided Voronoi domain is selected within the image. (B) A circular mask is applied to the ROI. (B and 
C) The Radon transform is applied to the ROI and the sides of the transform are smoothed with a Gaussian fi lter (fi fth order,   σ   = 0.75) 
and cropped (blue lines). Each cropped row of (C) contains information from each angle   θ   of Radon projection. (D) Shows the projection 
profi les at two rows corresponding to −15° (purple profi le) and 15° (orange profi le). To determine the row with the most contrast, the 
second derivative of each row is performed (E), and the row   θ   with the highest RMS (orange profi le) is selected as the orientation at that 
location. A low RMS location (purple profi le) is shown for comparison. (F) The orientation is assigned to that cell. (G) The algorithm is 
repeated for each six-sided cell location in the image. The adaptive optics image subtends a 120 × 120  µ m area.    
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was cropped from each image. Cone coordinates were semiau-
tomatically identifi ed using a previously described algorithm 
(Garrioch et al.,  2012 ). The spacing of cones and their packing 
arrangement were analyzed using ICD and a Voronoi tessella-
tion, which was used to extract the percentage of six-sided cones. 
The Pum, Fourier, and Radon algorithms were run on each image 
as described above.   

 Analysis of algorithm performance 

 To examine algorithm accuracy in the rotated versions of a “perfect” 
simulated mosaic, we compared the orientation of each six-neighbor 
cone to the known rotation of the simulated mosaic ( Fig. 5 ). The 
detected orientation of each cone from each algorithm was sub-
tracted from the known rotation for evaluating the error. A toler-
ance interval ±3° of the known rotation was used to account for 
rounding error and noise. Any cone orientations which fell outside 
the tolerance interval were considered incorrect.     

 For simulated mosaics containing multiple submosaics or real 
images of the cone mosaic collected using AOSLO, we compared 
the algorithms by estimating submosaic homogeneity. Homogeneity 
was determined by overlaying a grid with 15 × 15  µ m spacing 
on each mosaic. The variance of the orientation of cells within 
each grid square was calculated. Homogeneity was defi ned as the 
average pooled variance across all grid squares. Pooled variance 
describes the average spread of all grid variances about their mean; 
the higher the pooled variance in this analysis, the lower the sub-
mosaic homogeneity by a given algorithm. 

 We measured algorithm agreement using both the Pearson 
correlation coeffi cient and the ICC based on a two-way random 
model. The Pearson correlation coeffi cient was calculated to esti-
mate the correlation between algorithm pairs, and the ICC was 

used to estimate the reliability between orientations from all three 
algorithms. All statistical analyses were performed in SPSS (IBM, 
Armonk, NY). Data were expressed as mean ±  s.d.  (M ±  s.d. ).    

 Results  

 Simulated mosaic performance 

 For the rotated versions of the ideal simulated mosaic, each algo-
rithm was able to correctly assess the amount of rotation applied 
to the mosaic.  Fig. 3  exemplifi es the ability of each algorithm to 
detect the orientation of a perfectly hexagonal mosaic either in the 
absence or presence of noise. In a perfect mosaic ( Fig. 3A ), correct 
identifi cation of cone orientation within the ±3° tolerance was 
achieved for 100, 99.8, and 100% of cones using the Pum, Fourier, 
and Radon approaches, respectively ( Fig. 3B–3D ). The Fourier 
algorithm’s 0.2% error was due to the perfect lattice with no rota-
tion; the hexagonally located coordinates created artifacts in the 
Fourier domain, causing the algorithm to return erroneous values. 
Given that this only occurred in an extreme (and nonphysiologic) 
case, we considered the algorithm’s performance to be equivalent to 
that of the other two. The average absolute errors were 0.06 ± 0.02°, 
0.11 ± 0.04°, and 0.10 ± 0.24°, using the Pum, Fourier, and Radon 
approaches, respectively. When noise in the form of coordinate 
jitter and cone intensity variation was applied to the image ( Fig. 3E ), 
correct identifi cation of cone orientation within the ±3° tolerance 
was achieved for 95.8, 99.9, and 99.9% of cones using the Pum, 
Fourier, and Radon approaches, respectively ( Fig. 3F–3H ). The 
average absolute errors for the noisy mosaic were 1.18 ± 0.04°, 
0.15 ± 0.08°, and 0.22 ± 0.26°, for the Pum, Fourier, and Radon 
algorithms, respectively. Taken together, these results demonstrate 
excellent accuracy for all three algorithms. 

  

 Fig. 3.      Comparison of orientation algorithms using an 87,000 cones/mm 2  simulated mosaic without (A) and with (E) cone intensity 
variation and coordinate jitter. The neighbor derived orientation (Pum et al.,  1990 ) algorithm correctly determines the orientation of the 
mosaic without any coordinate jitter [(B), black orientation bars], but can produce results outside of tolerance (>|3°|, red orientation bars) 
when the coordinates are jittered and cone intensity varied (F). Both the Radon (C and G) and Fourier (D and H) algorithms are insen-
sitive to coordinate jitter and image intensity variability.    
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 The 100 simulated mosaics containing multiple submosaics had 
an average of 76.9 ± 2.1% six-sided Voronoi cells, and an average 
ICD of 3.8 ± 0.03  µ m. This ICD was slightly larger (5.5 ± 0.7%) 
than the ICD derived from the average density of each simulated 
mosaic (78,486 ± 1262 cones/mm 2 ). This was consistent with pre-
vious observations that within the photoreceptor mosaic there are 
point and line discontinuities, where the hexagonal lattice is dis-
rupted (Pum et al.,  1990 ; Ahnelt & Kolb,  2000 ). The presence of 
these disruptions in the mosaic reduces the number of ideally 
packed cones, increasing the measured ICD. Qualitatively, we 
found that both the Pum and Fourier methods were particularly 
susceptible to artifacts around the edges of six-sided submosaics; 
this was likely related to noise from neighboring nonhexagonal 
cones. On average, the Fourier method was the most homogenous 
with a 20.2 ± 9.0 degrees 2  pooled variance across all submosaics, 
while the Pum and Radon methods showed pooled variances of 
28.1 ± 4.5 and 32.6 ± 6.3 degrees 2 , respectively ( Fig. 4 ). The results 
from each simulated mosaic are summarized in  Table 1 . We found 
that the Radon and Pum methods correlated more closely ( r  = 0.92; 
 P  < 0.01) than the Radon and Fourier methods ( r  = 0.85;  P  < 0.01) 
and the Pum and Fourier methods ( r  = 0.84;  P  < 0.01). The average 
ICC for all pairwise correlations among all three algorithms was 0.95.       

 Real mosaics 

 The real photoreceptor mosaics from 17 subjects contained on 
average 71 ± 3% six-sided Voronoi cells. The average density was 
85,789 ± 13,251 cones/mm 2 , and average ICD was 4.0 ± 0.3  µ m. 
Using each mosaic’s density to calculate the expected ICD for a 

  

 Fig. 4.      Comparison of orientation algorithms using simulated mosaics. 
Algorithm agreement in simulated mosaics with a highest (A and B) and lowest 
(C and D) agreement. Cyan circles mark six-sided cell locations, while orange 
circles mark unanalyzed, non-six sided cells. Black bars are locations where at 
least two algorithms agreed within their combined tolerances (6°). Each color 
in the right column corresponds to results from each algorithm (Pum: orange, 
Radon: magenta, Fourier: cyan). If one algorithm was outside tolerance, a bar 
with the corresponding color was overlaid on the black bar. If all three algorithms 
disagreed, the orientation from each method is plotted. Scale bar is 20  µ m.    

  

 Fig. 5.      Comparison of orientation algorithms using real mosaics. Algorithm 
agreement in AOSLO images of the parafoveal cone mosaic with a highest 
(A and B) and lowest (C and D) agreement. Cyan circles mark six-sided cell 
locations. Orange circles mark to unanalyzed, non-six sided cells. Black 
bars are locations where at least two algorithms agreed within their com-
bined tolerances (6°). Each color in the right column corresponds to results 
from each algorithm (Pum: orange, Radon: magenta, Fourier: cyan). If one 
algorithm was outside tolerance, a bar with the corresponding color was 
overlaid on the black bar. If all three algorithms disagreed, the orientation 
from each method is plotted. Scale bar is 20  µ m.    

perfect triangular lattice (Coletta & Williams,  1987 ), we again found 
that the measured ICD was consistently larger (9.0 ± 0.8%) than the 
ICD derived from the mosaic density. When examining the orientation 
of the real mosaics, only the Fourier algorithm had an average pooled 
variance similar to the simulated parafoveal mosaics (22.2 ± 7.9 
degrees 2 ,  Fig. 5 ). In contrast, the Pum and Radon methods were less 
homogenous than the simulated mosaics with average pooled vari-
ances of 40.6 ± 5.6 and 41.3 ± 7.9 degrees 2 , respectively. The decreased 
homogeneity of both the Pum and Radon methods could be due to 
the lower percentage of six-sided Voronoi cones in real mosaics; on 
average, there were 5.9% less hexagonal cones in real mosaics than in 
simulated mosaics. While the orientation of nonhexagonal cones is not 
calculated for either algorithm, their presence still infl uences the orien-
tation of neighboring hexagonal cones, potentially decreasing the 
observed homogeneity. Despite the decreased homogeneity in real 
mosaics, we found that the Radon and Pum methods still correlated 
more closely ( r  = 0.87;  P  < 0.01) than the Radon and Fourier methods 
( r  = 0.82;  P  < 0.01) and the Pum and Fourier methods ( r  = 0.82; 
 P  < 0.01). The average ICC for all pairwise correlations among 
all three algorithms was 0.94. The results from each AOSLO dataset 
are summarized in  Table 2 .        

 Discussion 

 In this work, we have shown the performance of a previous orien-
tation detection algorithm (Pum et al.,  1990 ), as well as two new 
approaches to detecting cone orientation. The algorithms had very 
good reliability across both simulated (0.95) and real mosaics (0.94), 
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suggesting that each algorithm would provide an accurate descrip-
tion of photoreceptor orientations when applied to the coordinates 
(Pum and Fourier) or directly to an image (Radon). Analysis of inter-
algorithm correlations highlighted the differences between the 
Fourier method and the Pum and Radon methods; we found a lower 
correlation between the Fourier and Pum algorithms and the Fourier 

and Radon algorithms than between the Pum and Radon algorithms. 
This is likely due to orientation averaging present in the Fourier 
algorithm. Specifi cally, the orientation of a cell of interest determined 
by the Fourier algorithm is the average of that cell’s orientation and 
the orientations of its surrounding cells. This is in contrast to the Pum 
and Radon methods, which do not average surrounding orientations. 

 Table 1.      Simulated mosaic descriptive metrics summary  

Mosaic No.  
Density 

(cones/mm 2 ) ICD ( μ m) %6 Sides

Average submosaic 
pooled variance 

(degrees 2 )

Mosaic No.
Density 

(cones/mm 2 ) ICD ( μ m) %6 Sides

Average submosaic 
pooled variance 

(degrees 2 ) 

Pum Radon Fourier Pum Radon Fourier  

1  77,596 3.82 74.6 19.9 21.3 31.9 51 78,063 3.88 78.2 29.3 37.3 29.0 
2 77,962 3.86 71.7 27.9 34.6 30.5 52 77,932 3.84 78.2 32.0 35.3 7.7 
3 78,575 3.86 73.8 36.9 34.1 10.1 53 77,660 3.85 69.7 27.0 30.2 32.7 
4 78,127 3.84 79.5 26.1 27.4 13.6 54 78,112 3.87 78.2 21.7 22.4 34.6 
5 79,149 3.84 76.9 29.3 34.3 8.3 55 78,673 3.85 76.5 30.6 34.8 17.3 
6 79,026 3.84 76.7 24.5 28.3 17.1 56 77,878 3.84 77.6 26.4 37.3 37.6 
7 77,110 3.83 76.2 23.8 31.6 46.0 57 77,839 3.85 77.4 26.7 25.7 22.3 
8 78,343 3.87 78.2 29.2 31.6 21.4 58 78,229 3.86 78.9 27.0 27.2 29.5 
9 80,415 3.85 79.3 30.6 34.5 31.5 59 77,870 3.85 77.4 34.2 38.8 9.3 
10 76,731 3.81 76.4 30.0 34.3 29.1 60 78,419 3.85 78.2 29.2 30.5 10.2 
11 79,219 3.88 76.4 33.8 34.6 25.4 61 78,195 3.85 77.3 36.8 37.3 12.4 
12 79,707 3.83 77.9 32.3 36.6 9.3 62 77,428 3.85 78.2 23.2 30.5 29.0 
13 77,672 3.78 76.5 35.3 31.1 19.5 63 78,726 3.87 78.7 23.0 25.4 15.4 
14 81,162 3.86 78.1 37.5 47.7 10.0 64 80,915 3.84 76.2 32.4 39.9 19.2 
15 77,873 3.78 77.7 23.0 33.6 10.5 65 76,372 3.8 77.1 24.6 34.9 7.1 
16 78,298 3.86 77.3 25.6 35.9 21.7 66 77,466 3.9 77.2 27.6 41.5 25.1 
17 77,436 3.86 72.3 25.1 20.4 15.5 67 78,390 3.87 75.2 27.4 32.8 22.3 
18 80,399 3.87 76.7 33.9 37.6 15.6 68 78,691 3.84 80.5 33.6 47.4 18.7 
19 80,074 3.8 75.0 30.0 34.9 20.3 69 80,413 3.84 76.6 33.7 35.9 23.0 
20 79,314 3.81 77.4 29.4 39.6 16.3 70 77,953 3.8 76.5 26.7 36.6 13.4 
21 76,961 3.83 70.4 23.2 28.8 9.1 71 79,811 3.86 73.5 26.7 39.2 17.9 
22 77,464 3.87 79.3 26.8 33.6 22.1 72 78,632 3.82 78.1 26.9 36.9 33.2 
23 81,777 3.87 76.3 35.2 38.2 25.2 73 78,491 3.84 76.1 27.9 38.7 14.0 
24 77,462 3.8 78.3 25.1 28.6 27.7 74 78,404 3.85 78.2 26.5 34.8 32.2 
25 78,238 3.87 73.7 20.9 23.2 18.6 75 78,827 3.85 77.0 27.9 28.3 14.1 
26 82,282 3.85 75.9 28.0 33.6 21.0 76 78,120 3.84 76.4 31.1 35.3 22.4 
27 77,375 3.78 77.4 33.6 33.0 29.4 77 77,241 3.86 77.1 23.2 24.7 12.1 
28 77,426 3.88 79.8 25.2 21.2 11.7 78 78,464 3.87 77.4 29.9 30.2 26.9 
29 77,811 3.87 77.7 34.3 32.0 13.5 79 77,595 3.85 77.8 27.9 27.5 35.9 
30 76,876 3.87 78.2 22.7 23.6 27.4 80 77,791 3.87 79.7 33.0 27.4 15.1 
31 78,697 3.89 79.7 29.7 33.0 16.4 81 79,181 3.86 76.7 32.2 37.1 16.2 
32 79,403 3.84 71.6 28.1 27.1 7.2 82 77,673 3.82 78.0 20.6 20.8 21.0 
33 77,583 3.82 74.1 27.6 21.8 8.6 83 77,325 3.87 79.7 33.5 33.4 10.8 
34 80,415 3.87 77.4 26.0 37.3 26.1 84 79,387 3.86 78.5 24.2 30.8 31.4 
35 77,882 3.85 75.5 28.0 43.7 4.4 85 77,134 3.83 78.8 25.4 23.7 23.8 
36 76,864 3.85 79.6 25.5 26.8 20.5 86 78,809 3.87 78.7 32.7 40.2 21.8 
37 77,621 3.88 79.4 21.1 20.3 38.2 87 77,175 3.84 78.5 38.7 45.8 10.2 
38 77,793 3.86 77.4 25.5 30.9 19.8 88 81,248 3.88 76.4 33.7 40.5 18.1 
39 77,643 3.86 79.0 24.2 27.2 35.3 89 78,245 3.79 72.1 22.6 32.7 17.3 
40 80,524 3.87 75.2 32.6 39.9 9.0 90 76,911 3.84 78.5 21.7 24.5 16.9 
41 77,592 3.8 78.0 27.4 29.9 29.5 91 78,126 3.88 78.1 26.1 26.7 16.4 
42 77,483 3.87 77.9 21.0 28.9 5.0 92 78,185 3.85 77.1 27.6 36.2 34.5 
43 79,328 3.87 78.5 27.3 41.5 13.1 93 78,245 3.85 75.6 31.9 39.7 8.5 
44 78,328 3.83 78.9 21.5 21.9 26.2 94 78,749 3.85 77.6 32.9 41.2 13.8 
45 78,285 3.86 76.5 21.5 31.2 18.4 95 77,376 3.84 77.8 25.2 30.6 20.8 
46 81,855 3.86 78.5 27.0 29.3 16.5 96 78,471 3.87 79.5 26.0 27.1 18.6 
47 80,904 3.78 80.1 28.7 27.5 28.7 97 78,819 3.85 77.8 20.5 31.5 28.4 
48 76,999 3.8 76.3 25.9 33.5 14.2 98 79,484 3.85 74.3 32.2 36.7 40.9 
49 81,930 3.87 79.8 38.9 38.5 18.3 99 78,569 3.81 76.7 29.6 43.9 4.6 
50 77,350 3.77 76.1 30.0 36.8 20.9 100 78,541 3.85 78.0 26.2 26.9 20.1 

 Average  78,486 3.85 77.1 28.1 32.6 20.2  
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The intrinsic “regional averaging” performed in the Fourier method 
allows the algorithm to be robust to single-cell changes in orienta-
tion, and this property was refl ected by submosaic homogeneity 
that was consistently lower than the other two algorithms in both 
artifi cially generated and real data ( Tables 1  and  2 ), but similar 
between the Pum and Radon algorithms. However, regionally 
averaging multiple orientations can result in inaccuracies near the 
edges of submosaic patches where non six-sided cells and submo-
saics with different dominant orientations meet (Pum et al.,  1990 ; 
Curcio & Sloan,  1992 ; Lombardo et al., 2013 b   ; Lombardo et al., 
 2013c ). Understanding this difference as well as other algorithm 
limitations is essential to understand the specifi c utility of each 
algorithm. For example, the reliability of the Fourier and Pum 
approaches is directly linked to the accuracy of the cone identifi ca-
tion algorithms that provide their coordinates. Cone identifi cation 
algorithms can miss cones, identify extra cones, or incorrectly 
identify a cone’s centroid (Lombardo et al.,  2014 ); each of these 
scenarios could affect the results of Pum approach; since the 
Fourier approach provides an average orientation of the cones in 
a ROI, it is less sensitive to this error. Likewise, the Fourier method 
is able to overcome cell coordinate imprecision, or “jitter,” because 
any small differences in coordinate location are integrated when 
the coordinates are fi rst transformed ( Fig. 1D ), whereas the Pum 
method can return an erroneous result if the axis of the jitter is 
perpendicular to the circumference of the polygon formed by 
neighboring cones. This limitation can be seen in the ideal mosaic 
results ( Fig. 3 ), where the accuracy of the Pum method decreases 
markedly from 100 to 95.8% in the presence of coordinate jitter. 

 In contrast to coordinate-centric approaches, the Radon method 
is performed directly on the image, and only uses the cone coordinates 
to determine which locations to analyze. Because the algorithm is 
performed directly on the image, the algorithm requires image quality 
suffi cient enough to resolve inter-cell spacing. Therefore, any image 
with poor cell resolution due to either poor image quality or an insuf-
fi cient system resolution will cause the algorithm’s result to be unreli-
able. Moreover, the Radon algorithm cannot determine the orientation 
of cells near the edge of an image without using some form of 
correction (edge replication, mirroring, or padding). A benefi t of 

image-based methods is that they do not require cell coordinates, 
and in principle, orientation could be determined at each pixel within 
an image, removing the requirement of predetermined cell coordi-
nates. An image-only approach could also be used in the Fourier algo-
rithm. However, future work is needed to understand the reliability 
of the Fourier method using only the retinal image. 

 As each algorithm accurately defi nes orientation in ideal mosa-
ics, the primary difference between the algorithms is how each 
responds to input imprecision. This could directly infl uence which 
algorithm is applied. For example, the Fourier algorithm appears to 
be the most robust to poor signal-to-noise ratio and poor cell iden-
tifi cation precision. This makes it an ideal candidate for instances 
where the data reliability is poor. Conversely, in situations where 
there is high image quality, the Radon algorithm could be preferred 
to retrieve directly the cones orientation. Finally, in cases where 
both the image and cell coordinate reliability is excellent, Pum’s 
method would be expected to perform best. 

 Cell orientation has the potential to detect subtle changes in photo-
receptor regularity, but there are numerous other aspects of orientation 
that still need to be examined. Principle among them is the effect of 
eccentricity on orientation. It has been established that the percentage 
of six-sided cells increases away from the fovea and peaks at approxi-
mately 0.5° before decreasing to foveal levels at 1° and beyond (Baraas 
et al.,  2007 ; Li & Roorda,  2007 ; Carroll et al.,  2010 ; Dees et al.,  2011 ; 
Lombardo et al., 2013 b   ). The effect of the percentage of six-sided 
cells, e.g., by analyzing real mosaics collected beyond 1°, was not 
explored in this manuscript, although we would expect that the ori-
entation of cone photoreceptors would be far less homogenous due to 
the loss of the hexagonal lattice. Other phenomena that may contribute 
to the orientation of hexagonal cones as a function of eccentricity are 
local variance of the cone shape and the compression along the vertical 
meridian as a consequence of the expansion along the horizontal 
meridian of the photoreceptor mosaic; the effect of these properties 
could be explored in a future work. 

 In addition to the effect of eccentricity on orientation, it has not 
yet been determined how the orientation of a mosaic changes in 
response to retinal pathology. Nevertheless, the results from each 
algorithm suggest that the orientation of individual cones is not 

 Table 2.      AOSLO descriptive metrics summary  

Subject ID  Density (cones/mm 2 ) ICD ( μ m) %6 Sides

Average submosaic pooled variance (degrees 2 ) 

Pum Radon Fourier  

AD_10252  90,932 3.97 71.8 41.7 54.6 24.2 
AD_10253 78,959 4.18 68.0 45.2 40.5 18.8 
JC_0077 84,418 4.03 73.3 41.3 41.2 29.6 
JC_0677 111,954 3.49 74.8 32.5 47.0 30.7 
JC_0878 81,264 4.09 69.7 45.5 44.6 31.7 
JC_0905 87,428 3.96 77.3 34.3 34.6 21.3 
JC_10119 83,935 4.04 71.1 41.1 47.2 26.8 
JC_10121 87,417 3.93 73.3 42.6 42.6 20.4 
JC_10122 113,970 3.47 68.2 43.1 51.7 15.9 
JC_10145 78,572 4.2 71.9 39.3 32.7 15.3 
JC_10147 99,352 3.69 70.9 47.7 46.4 31.7 
JC_10304 87,701 3.99 71.2 47.2 35.2 12.0 
JC_10312 73,170 4.42 68.3 40.5 34.5 10.8 
JC_10316 74,534 4.31 67.3 34.2 27.6 12.4 
JC_10317 61,587 4.76 67.8 43.7 50.8 18.1 
JC_10318 75,277 4.3 74.2 26.7 31.8 37.2 
JC_10329 87,940 3.96 71.7 43.4 39.2 19.8 
 Average  85,789 4.0 71.2 40.6 41.3 22.2  
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random, but correlated to their neighbors, consistent with previous 
observations (Pum et al.,  1990 ; Curcio & Sloan,  1992 ). Thus, devi-
ations in the expected orientation of neighbors within the cone 
mosaic could be used as a metric of photoreceptor structure, espe-
cially when used as a complement to conventional cone metrics 
such as cell density and spacing. Indeed, the most commonly used 
mosaic descriptors are not directionally sensitive, and only provide 
distance measurements derived from cone positions. Measurements 
of cone regularity, like cell orientation, have the potential to measure a 
unique aspect of the structure of a photoreceptor mosaic. As the 
clinical utility of AO devices continues to expand (Carroll et. al., 
 2013 ), the development of novel, sensitive metrics are essential to 
characterizing the human photoreceptor mosaic.      
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