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Abstract: Polarization sensitive second harmonic generation (pSHG) microscopy has been 
used previously to characterize the structure of collagen fibers in corneal samples. Due to the 
typical organization of the corneal stroma, the information that pSHG provides may be 
misleading in points where two different collagen fiber bundles orient along different 
direction crossings. Here, a simulation that illustrates the problem is presented, along with a 
novel method that is capable of identifying these crossing points. These results can be used to 
improve the evaluation of corneal collagen structure, and it has been applied to analyze pSHG 
data acquired from healthy and keratoconic human corneal samples. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The shape and transparency of the optical media of the eye, like the cornea or the crystalline 
lens, play an important role in the quality of image formation on the retina. The microscopic 
structure of these biological tissues is closely related to their optomechanical characteristics. 
In the case of cornea, its shape and transparency are provided by this structure. The corneal 
stroma is formed by a number of stacked lamellae of type I collagen fibrils, although type VI 
collagen and proteoglycans can also be found in its structure [1–4]. Any alteration of this 
structure, caused by either trauma or disease, can lead to changes in the physical and optical 
characteristics of the cornea, and result in vision loss [2]. 

Different techniques have been used to characterize the microstructure of the human 
cornea in the past. X-ray microscopy and scanning electron microscopy have been proposed 
to precisely characterize molecular structure of the corneal collagen, such as the calculation of 
its helical pitch angle [2,4,5]. However, these techniques require sample preparation protocols 
that are not compatible with in vivo measurements. Recently, multiphoton (MP) microscopy 
has been used to study the microscopic structure of different types of biological tissue, 
including human corneal samples. MP microscopy has a great potential for in vivo studies due 
to the following three main reasons: firstly, different molecules present in a biological tissue 
can be observed by means of MP microscopy without the requirement of any exogenous 
contrast agents [6]. Secondly, MP signal is usually generated by means of ultrashort laser 
pulses at intensity values that are safe for in vivo experiments. Furthermore, the applied 
excitation wavelength is usually close to the infrared, and exhibits high tissue penetration. 
Thirdly, MP microscopy features intrinsic axial depth discrimination and reduced 
photodamage. 
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From all of the different MP microscopy techniques, second harmonic generation (SHG) 
microscopy has become very popular for studies of the cornea. This is due to the fact that 
corneal collagen is packed in the tissue in such a way that it behaves like an SHG active 
polycrystalline lattice [7–10]. This characteristic has been used in the past to observe the 
orientation of the collagen fibers using different theoretical models [9,11–15]. In particular, 
the application of polarization sensitive SHG (pSHG) has been reported for the classification 
of human corneal images according to the depth in the tissue at which they were acquired 
[16]. In these experiments, the polarization direction of the excitation beam is changed, 
resulting in a modulation in the intensity of the SHG signal obtained from the tissue. This 
modulation is related to the angle between the polarization of the excitation beam and the 
orientation of SHG active molecules. However, in this model it is assumed that all of the SHG 
active molecules within a pixel volume, or voxel, are oriented along the same direction. This 
requirement can produce misleading results in the study of corneal collagen tissue, since the 
corneal collagen fibers usually intertwine and are oriented along different directions. This 
situation is found especially in the anterior portion of the stroma, which plays the most 
important role in bearing stress and maintaining corneal shape [3,14–16]. 

In this work, the effects that collagen fiber crossings can have on the results of the pSHG 
model are illustrated. A method that is aimed at improving the information that can be 
generated by means of this pSHG biophysical model is also presented. This method is able to 
detect the pixels of the pSHG images that include the contribution of bundles of collagen 
fibers oriented along different directions. Once these pixels are detected, they can be filtered 
out, providing more reliable information related to the orientation and molecular structure of 
the collagen fiber bundles. These results have been experimentally tested on starch samples 
and also on healthy and keratoconic corneas. 

2. Materials and methods 

2.1. Biophysical model 

The biophysical model used in this work has been described extensively in previous studies 
[17–22]. This model can predict the intensity of SHG signal, ISHG, generated by an active 
supramolecular assembly with cylindrical symmetry depending on the excitation beam 
polarization orientation, α, and also the orientation of the SHG active molecule, φ, as follows 
[17]: 

 0 2 4( , ) cos 2( ) cos 4( ),SHGI a a aϕ α ϕ α ϕ α= + − + −  (1) 

where a0, a2 and a4 are coefficients that will be described in more detail in the following 
paragraphs. By taking the Fourier Transform (FT) of Eq. (1) with respect to α the following 
expression is reached [11]: 

 
0 2 4

( , ) (0) exp( 2 ) (1 ) exp( 4 ) (2 ) . ,i a a i a i c cϕ δ ϕ δ ϕ δΩ = + − Ω + − Ω +  (2) 

where Ω is the spatial frequency in the Fourier domain, and c.c. indicates the complex 
conjugate. 

From Eq. (2), it is possible to calculate two different quantities related to the molecular 
structure of the SHG active assembly: the orientation of the supramolecular assembly, φ, and 
the orientation of the hyperpolarizability tensor dominant axis, θe. In the case of corneal 
collagen, φ is usually related to the orientation of the collagen fiber bundles, and θe has been 
previously related to the helical pitch angle of the collagen triple helix. These identifications 
will be assumed from now on in this text. However, the general meaning of φ and θe should 
be considered when extending this model to other types of tissue. 

The helical pitch angle, θe, can be calculated from the parameters in Eq. (2) as follows 
[11]: 
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In the case of the orientation of the collagen fibers, φ, it can be determined by computing the 
complex argument of the second coefficient in Eq. (2) as: 

 2arg[ exp( 2 )] / 2.a iϕ ϕ=  (4) 

At this point, it is worth noting that, according to Eq. (2), the same information can also be 
extracted from the third component in that equation: 

 4arg[ exp( 4 )] / 4.a iϕ ϕ=  (5) 

It has also been detailed in previous studies that the values of the coefficients a0, a2 and a4 can 
be calculated from θe, [11,23], and their explicit expressions are: 
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Note that A is a proportionality constant that appears in all of the components and here it will 
be set to 1, since it won’t affect the calculations in Eqs. (3), (4) or (5). 

According to this, for any given value of φ and θe, the intensity of the SHG signal can be 
determined for a particular value of α using Eq. (1). However, the described model assumes 
that the orientation of the SHG active molecules is well defined, and therefore all the 
molecules are oriented in a particular direction. As already mentioned, this may not be 
accurate for collagen fibers in different lamellae of the cornea. 

Previous reports have shown that the overall SHG intensity at a pixel where two collagen 
fiber bundles cross can be described as the sum of the signals generated by each of the 
isolated fibers [14,15]. This can be expressed as: 

 ,1 , 2 1 2( ) ( , ) ( , ),TOT SHG SHG SHG SHGI I I I Iα α ϕ α ϕ= + = +  (9) 

where ITOT(α) is the total SHG signal intensity generated at a particular point in the sample, 
illuminated by a laser beam polarized along the direction α, while ISHG,1 and ISHG,2 are the 
SHG intensities generated on the fibers 1 and 2 respectively when considered independently. 

To evaluate the error incurred by the pSHG model used when collagen fibers oriented 
along different directions are considered to be aligned along one specific and well-defined 
direction, we generated a set of numeric data. Two different matrices with 512x512 elements 
were generated, each matrix representing the orientation of a collagen fiber, φ, on each pixel. 
These matrices are shown in Fig. 1. The values of φ1, showing the orientations of collagen 
fiber 1 from the first matrix relative to the horizontal axis, are shown in Fig. 1(a). The value 
of φ1 changes between −90° and 90°. The second matrix with the values of φ2, is shown in 
Fig. 1(b). It has been divided into two halves: in the left half, φ2 was kept constant at a value 
of 0°, while in the right half, the value of φ2 was changed as the angle with the horizontal 
axis, in the same way as φ1. The values of φ1 and φ2 have been used to calculate ISHG,1 and 
ISHG,2 respectively, in Eq. (9). For that, we chose a value of θe = 45° close to the existing data 
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for collagen [13,18,24] and by applying this value in Eqs. (6), (7) and (8) the values for the 
coefficients a0 = 2.875, a2 = 1.5 and a4 = −0.375 were calculated. Similar to the actual pSHG 
experiment, which will be described in following sections, nine different values of α (from 0° 
to 180° with steps of 20°) were used to calculate ISHG,1 and ISHG,2 using Eq. (1). Finally, 9 
different matrices of ITOT(α) were calculated, one for each α value, as the sum of ISHG,1 and 
ISHG,2, according to Eq. (9). In this way, a simulation was designed to study the behavior of 
the pSHG model when two crossing collagen bundles are considered. A 3D set of ITOT(α) data 
was generated with a resulting matrix of 512 × 512 × 9 elements. In this data set, it will be 
possible to differentiate two different situations: on the right half of the images the overall 
intensity will be the contribution of two collagen fiber bundles aligned in the same 
orientation, while on its left half the overall intensity will be the sum of the contributions of 
two fiber bundles oriented along different directions. Since φ2 is kept constant on the left half 
of the image, while φ1 is varying along the horizontal axis, all the possible angles between the 
two different sets of collagen fiber bundle orientations can be easily visualized in the result. 

 

Fig. 1. The values of the orientation data for collagen fibers, a) φ1 and b) φ2, used as input to 
generate the theoretical data set of two crossing collagen fibers. 

Once this theoretical data set was generated, the FT of ITOT(α) was taken along the 
polarization direction, α, and Eqs. (3) and (4) were used to recover φ and θe [11]. The results 
of these calculations are shown in Fig. 2, and the recovered values will be referred to as φres 
and θres from this point on. 

 

Fig. 2. The results of the pSHG model used with the theoretical data simulating two crossing 
collagen fibers generated as described. a) Values of φres and b) Values of θres. 

In the case of φres, shown in Fig. 2(a), these values have been calculated using Eq. (4). As 
already explained, on the right half of the image, the results correspond to two collagen fiber 
bundles oriented along the same orientation, and this orientation is correctly recovered in φres. 
In the left half of the image, the results correspond to two collagen fibers oriented along 
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wrap the values of φres,2 between ± 45° instead. The values of φres,2 wrapped between ± 45° 
will be referred to as φ’res,2 from now on, and they are shown in Fig. 3(c). In order to show the 
similarity between φ’res,2 and φres,4, the difference between these two quantities, which is 
called Δφres, was calculated and is shown in Fig. 3(d). It should be noted that the values of 
these results range from −90° to 90°, since the maximum difference between two quantities 
comprised between −45° and 45° can have an absolute value of 90°. 

The results in Fig. 3(d) are interesting, and to better explain them, we have displayed them 
in a different way in Fig. 4. Figure 4(a) shows the data of Δφres shown in Fig. 3(d), and in Fig. 
4(b) the histogram Fig. 4(a) is presented. This histogram shows 5 different peaks: one peak 
around 0°, two peaks close to values of ± 90° and two more close to values of ± 45°. To 
understand what these peaks are related to, let us concentrate on the histograms of the left and 
right halves of the image separately. 

Let’s first consider the data of the right half of the image in Fig. 4(a). In this part of the 
image, all the molecules are oriented along the same direction, and it is expected that Δφres 
would be close to zero. These are the data in Fig. 4(e). In the corresponding histogram, Fig. 
4(f), it can be seen that the most repeated values for Δφres are around 0°, which correspond to 
the pixels where the values of φ’res,2 and φres,4 are very similar. However, there are also 
smaller peaks close to values of ± 90°. In the image, Fig. 4(e), the pixels with values of Δφres 
close to ± 90° (these are the pixels in maroon and dark blue) are found along the directions ± 
45°. These peaks come from the noise introduced by the calculation itself. To illustrate this, 
let us consider a point with φres,4 = 44°, and assume that the noise changes the expected value 
of φres,4 by a 5% to a different amount of 46°. After phase wrapping, the new value of φres,4 
would be −44°, which once subtracted from φ’res,2 will produce a value of Δφres = 88°. As 
mentioned above, this situation will mainly arise around the values of φ close to the phase 
wrapping angle limit, which is indeed observed in Fig. 4(e). 

 

Fig. 4. a) Values of Δφres identical to those in Fig. 3(d). b) Histogram of the values in a). c) 
Values of Δφres only for the left-hand side (pixels with crossing fibers) of the data in a). d) 
Histogram of the values in c). e) Values of Δφres only for the right-hand side (pixels with 
parallel fibers) of the data in a). f) Histogram of the values in e). 

In Fig. 4(c), the results for the left half of the Δφres image are shown. This data presents 
crossing collagen fibers along different directions. The largest values of Δφres appear when the 
crossing fibers form angles of ± 90° (orange and blue pixels). In the corresponding histogram, 
Fig. 4(d), there is also a main peak around 0° as in the previous case. However, there are also 
peaks in Δφres histogram around the values ~ ± 45°. These values correspond to the pixels 
where the two collagen fibers are not aligned and, they form a certain angle instead. In Fig. 
4(c) it can be seen that these pixels correspond to those positions where the difference 
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between the input values φ1 and φ2 is larger than 45°, which is where blue and orange pixels 
can be found. 

After this consideration, it can be seen that the histogram in Fig. 4(b) shows all of the 
peaks described above: one large peak around 0°, two peaks at ± 90° and two more at ± 45°. 
Using the data in the histogram of Fig. 4(b) we can determine the pixels with crossing fibers, 
which would be those included in the peaks around ± 45°. These pixels have values of Δφres in 
the ranges of (−53.11°, −22.92°) and (22.92°, 53.11°). This information can be used to 
identify and filter out the pixels with crossing fibers in order to obtain the collagen fiber 
orientations more reliably. 

In the following sections, these results will be validated using the data acquired from 
different biological samples. 

2.2 pSHG microscopy imaging 

The results obtained with the simulation described in the previous section have been tested 
using the experimental data from real samples. To do this, the pSHG microscopy images have 
been acquired using a setup that has been fully described previously [13,21,23]. A Kerr lens 
modelocked Ti:sapphire laser (MIRA 900f, Coherent) was used as the excitation source. This 
pulsed laser source was operated at a central wavelength of 810 nm with a pulse duration of 
160 fs (measured at the sample plane) and a repetition rate of 76 MHz. A water immersion 
1.05 NA 25x objective (Plan Apochromat LWD*, Nikon) was applied to focus the light on 
the sample, while another 1.05 NA 25x water immersion objective (XLPlan N, Olympus) was 
used to collect the signal generated in the forward direction. The theoretical axial resolution 
of the system was 1 µm [25]. Typical frame acquisition time for a single 512x512 pixels 
image was about ~1.5 s. The effect of depolarization of the fundamental beam introduced by 
the different optical components was also measured at the sample plane, as previously 
described [13]. 

In a first approach, a starch granule was studied as a representative case for the pSHG 
model. It has been previously reported that the amylopectin molecules in a starch granule are 
SHG active, and that they are radially oriented within the granule, without any crossing 
between them [26]. The results obtained will be analyzed in detail in the following section. 

Ex-vivo samples of healthy and keratoconic human corneas were also analyzed using our 
system and method. The samples were obtained in compliance with the guidelines of the 
Declaration of Helsinki for research involving the use of human tissue and the experimental 
protocol was approved by the local ethical committee (Clinic Barcelona, Hospital 
Universitari, Barcelona, Spain). The healthy corneas were provided by the Veneto Eye Bank 
Foundation (Zelarino Venezia, Italy) with the request of endothelial cell density ≥ 2000 
cells/mm2. They were stored in 15% dextran-enriched corneal medium storage solution [16]. 
The corneas affected by keratoconus were harvested from patients undergoing penetrating 
keratoplasty at the Department of Ophthalmology of the University of Florence (Italy). 
Immediately after surgery, the corneas were immersed in 2.5% glutaraldehyde solution and 
shipped to the laboratory via express air courier for pSHG imaging. 

For imaging, each corneal sample was placed in a custom-made chamber filled with 15% 
dextran. The sample was mounted on the microscope between two different #1 cover-slips 
(0.13 to 0.16 mm thick), with its anterior surface parallel to the scanning plane. Z-stacks of 
images of the whole depth of the sample were acquired. These images were taken at 5 μm 
intervals. Imaging was performed on several areas of the central 2 mm of each cornea. The 
optical power after the objective was measured to be ~15 mW and it was adjusted with 
imaging depth to compensate for signal attenuation. The power was increased up to 50% in 
deeper planes in order to cover the full dynamic range of the detector. We made sure that no 
damage occurred to the tissue during measurements; any alteration would have been observed 
clearly as a consequence of photodisruption [27]. 
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Nine different pSHG images for each plane of focus were obtained by exciting the corneal 
lenticule with the same number of different linear polarizations [13,19]. Polarization of the 
excitation beam reaching the sample was changed using a rotating half wave plate. SHG 
images were obtained for the polarization values ranging from 0° to 180° at 20° steps. These 
images were stored for post-processing. In an attempt to reduce the noise in the images, each 
polarization experiment was repeated four times and then averaged. The overall acquisition 
time of a pSHG experiment was 1.5 minutes for each focal plane. 

3. Results 

In this section, the results obtained from the images of real samples are discussed. The section 
is divided into two parts: the analysis of the images of starch granules, and the same analysis 
for the excised corneal samples. 

3.1 pSHG imaging of starch granules 

Figure 5 shows some representative images of the pSHG images obtained from starch 
granules. Figure 5(a) shows the average of the 9 SHG intensity images with rotated 
polarizations acquired as described in the previous section. Figure 5(b) shows φres,2, the 
orientation of the pSHG active molecules in each pixel of the image, obtained using Eq. (4). 
A radial distribution is observed, as expected [26]. To test the validity of the model, Δφres was 
also calculated for the sample. The pixels with Δφres values laying between (−53.11°, 
−22.92°) and (22.92°, 53.11°) were identified. This information was used to generate a mask 
to reject these pixels from the data set, since the simulations show that these are the pixels 
with SHG active molecules oriented along different directions. The resulting image after 
these pixels were rejected is shown in Fig. 5(c). By comparing this image with the image in 
Fig. 5(b), it can be seen that only a few pixels of the data set are rejected. These rejected 
pixels correspond to molecules oriented close to φ = ± 45°. As explained before, these are 
special values of φ because they are the limit angles for the phase wrapping of φres,4 values, 
where noise plays an important role. These results indicate that, except for the particular 
orientations φ = ± 45°, our method is not affected by the orientation of the SHG active 
molecules. Figure 5(d) shows the histogram of θe values. These data have been fitted to a 
lognormal function. In the plot, θe values have been normalized to the peak value of the fitted 
curve. The mode of the fitted lognormal function, θe = 36.7°, is in a good agreement with the 
values of the helical pitch angle for starch granules reported in previous works [24]. Since in 
this case very few points are rejected by the proposed analysis, these results for θe do not 
change considerably when using the described mask. 
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Fig. 5. a) Average intensity of the 9 pSHG images acquired from a starch granule. Scale bar is 
10 μm. b) Values of φres,2 calculated from the image in a). c) The same image as in b) after 
applying a mask calculated using Δφres as explained in the text. d) The histogram of θe values. 

3.2 pSHG imaging of human corneal samples 

As already mentioned, the use of the method described here has been extended to the study of 
the collagen fiber structure of healthy and keratoconic excised human corneal samples. Figure 
6 shows some representative results, obtained from an excised healthy human cornea at a 
depth of 220 µm. Figure 6(a) shows the pSHG intensity image of the stroma calculated as the 
average of the pSHG images acquired for the 9 different polarization directions of the 
excitation beam, as described in section 2.2. In this image, the structure of the collagen fibers 
oriented along different directions can be clearly observed. Figure 6(b) shows the results of 
φres,2 obtained for this particular set of images using the pSHG model described in the 
previous studies. In these calculations, noisy pixels have been filtered out in a first approach 
by considering appropriate values for signal to noise ratio (SNR) of the SHG signal, and 
appear in black [16]. In the image, the collagen fibers appear in different colors, depending on 
their orientation calculated using the method described. The main components of the 
orientation of the fibers appear in the image in orange-yellow, which corresponds to the 
orientation angles of 25° to 35°. In addition, some dark blue fibers can be identified, 
corresponding to the angular range of −60° to −80°. These two main directional bands seem 
to be clearly represented in Fig. 6(a). However, the white circle in Fig. 6(b) shows some 
fibers in red, which correspond to the orientation of ~70°. Similarly, the red circle shows 
some fibers in green, which correspond to the orientation of ~0°. This image illustrates the 
problem that we discussed earlier, since these orientations do not correspond to those 
observed in Fig. 6(a). 
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translates on a hardware configuration change to increase the numerical aperture of the 
objective used. This can be a limit to the performance of the system. Nevertheless, even with 
optimized axial resolution, misalignments between the image plane and the orientation of the 
lamellae in the cornea can occur, and this can lead to areas in the image including intersection 
between different lamellae and therefore the problem may still arise. In this sense, it seems 
appropriate to have a method that can determine the pixels that may detect conflicting results 
in an automated way. 

We have therefore presented and tested a new method to determine the pixels in pSHG 
images which may contain information generated at different crossing collagen fibers, and the 
obtained results are in good agreement with similar methods available in the literature. The 
presented model has great potential in the study of the collagen structure in the human cornea, 
especially in its characterization to determine the differences between healthy corneas and 
those affected by disease known to have an impact on the collagen distribution, such as in the 
case of keratoconus. Future studies will aim at developing pSHG-based imaging biomarkers 
for identifying the number and density of crossing collagen fiber bundles in order to assess 
the structural integrity of cornea tissue. 
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